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INTRODUCTION 

In [1-3], a solution was given to the problem of an infinite strip of width 2h contain- 
ing a longitudinal symmetrically arranged crack of length 21. Three types of boundary condi- 
tions at the lateral surfaces of the strip were considered: contact with absolutely rigid, 
smooth bases (this condition is realized in the problem of a periodic system of parallel 
cracks of identical length), the boundaries of the strip free from loads, and conditions of 
rigid attachment (displacements at the lateral surfaces of the strip equal to zero). The 
solutions obtained are valid in general form for h/l >> 1 (in [3], for h/l > 2). In [4, 5], 
the Wiener--Hopf method was used to obtain solutions of this problem in the limiting case 
where h/l << i. The present article gives a general solution of the problem under the condi- 
tion that the crack is disposed parallel to the boundaries of the strip, but not necessarily 
at an identical distance from them. The limiting equilibrium of a crack in a strip in this 
case will be determined by the two stress-concentration factors K I and KII , in distinction 
from the symmetrical case, where the limiting equilibrium is determined by only the one co- 
efficient K I. For different boundary conditions, the dependences of K I and KII are plotted 
as a function of the ratio of the distance between the crack and the nearest boundary to the 
half length of the crack. 

w Under the assumption that the deformed state is symmetrical with respect to the 
axis x = 0, the general solution 4 the equations of equilibrium of an isotropic elastic body 

(l - -  2v)Au @ grad d ivu  = 0, u = u.i  @ w.j 

can be written in the form 

w (x, y) ---- -~- .~ [(A -]- Bsy) sh (sy) -]- (G "~ Dsy) ch (sy)] cos ($x) d$, 
U 

-- u (x, y) = -~ [ (A+ Dsy + 7B) sh (sy) + (A + Bsy + 7D) ch (sy)] sin (sx) ds, 
0 

(1.1) 

where y = (3-4)~; A, B, C, and D are arbitrary functions of s. The connection between the 
components of the stress and deformation tensors is given by Hooke's law, 

%~ = 2(I - -  2v)-~[O - -  ~)au l~  + va~a~],  

~x = 2(I -- 2~)-1[v0ul0x + (i -- ~)awlay], (i. 2) 

The formulas (i.i) and (1.2) contain dimensionless quantities. For simplicity in writ- 
ing, the primes are omitted 

< ~ , y , u , w , h > ' =  < x , ~ , u , w , h >  , l 'ciy = ~iJ/~' ~ = E / 2 ( 1 +  ~). 

We c o n s i d e r  a n  e l a s t i c  l a y e r - - h 2  ~ y ~ h a ,  Ix]  < ~ h a v i n g  a c u t ,  a r r a n g e d  w i t h  y = 0 
a n d  Ix]  g 1 ,  u n d e r  c o n d i t i o n s  o f  p l a n e  d e f o r m a t i o n .  A t  t h e  l a t e r a l  s u r f a c e s  o f  t h e  l a y e r  
w i t h  y = ha  a n d  y = - h a ,  x < ~ ,  t h e  s a t i s f a c t i o n  o f  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  i s  a s -  
s u m e d :  

The layer is located between absolutely rigid smooth slabs, 

~v = 0, w = 0; (1.3) 

the boundaries of the layer are free, 
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%u = 0, ~ = 0; (i, 4) 

the bases of the layer are rigidly fixed, 

= o, ~ = 0. (i. 5) 

At the surface of the cut with y = 0 and ]xl< i, 

%~ = --p(x)l~,~= --~(x)l~. (1.6) 

In the layer--ha ~ y ~ h, we separate out two regions: the first region 0 ~ y < h~, 
Ix[ < ~ and the second --hu < y ~ O, Ixl < -. Values related to the first region will be de- 
noted by the subscript i, while those related to the second region will be denoted by the 
subscript 2. The form of the solution (i.i) will be common for these regions. Thus, to de- 
termine the eight unknown functions Ai(s) , Bi(s), Ci(s), and Di(s) (i = i, 2) we have six 
boundary conditions: four at the lateral surface of the strip and two at the surface of the 
cut. In addition to the boundary conditions, we also must satisfy the conditions of the 
continuity of the stresses for y = 0 and the continuity of the displacements for y = 0 and 
Ix[ > i: 

o~uu--o~yu.=^,Olfor lzl< ~, 
Glxy - -  O2~y U} 

( 1 . 7 )  
w,--w~=O,~ for I z l > l .  

We s o l v e  t h e  p r o b l e m  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  ( 1 . 3 ) .  I n  t h e  c a s e  o f  t h e  u s e  o f  t h e  
boundary conditions (1.4) and (1.5), the solution is carried out completely analogously. Us- 
ing (1.3) and the first pair of conditions from (1.7), we obtain 

= , - '  - A, = , - '  [B, I - 

D~ = --B~cth//1, D~ = B~ cth H~, 

where HI = sinh,; Hu = sinha; ~, = ~, (H,, Ha) = Hacosh H~'sinh-*Ha + cosh Ha'cosh Ha; @a = 
u(H,, Ha) = H,cosh Ha'sinh-*H, + 2(l-~)cosh H,'cosh Ha + (l--2~)coshaH,'sinh Hu'sinh-*H,; 

~a = ~a (H,, Ha) = Hasinh. H,sinh-*Ha + cosh Hu.sinh H,; ~4 = ~a (H,, Ha) = H,sinh-Hasinh-*" 
i H,--2(l--~)cosh Ha'sinh H,(l--29)cosh H,'sinh Ha; ~ = sinh(H1 + Ha), and the functions ~i 

(i = I, 2, 3, 4) are constructed according to the rule 

The remaining mixed boundary conditions (1.6) and the second pair of conditions from (1.7) 
can he written using only the functions Bz and B= in the form of pairwise integral equations: 

y - cos (. ,)  d, 

0 

4 ~ 

0 

! 
= -- p (z)/~,[ 

! Z 

(~)/~ I 

< i, 

(1 - v) ~-t ~ [B, - B~I cos (,x) d, = 0, ] 
0 z 
~o 

4 (t - -  v) ~ - 1  S s [B, cth/ /1  + B~ eth H21 cos (sz) ds " 0 
0 

> i .  

(1.8) 

The last equation corresponds to the condition ~ul/~x -- ~ua/Sx = 0 for y = 0 and lxl > i. 

w It is obvious that the last two equations of system (1.8) can be rewritten in the 
form 

i 

B, (s) --  B~ (s) = I wo (x) cos (sx) 
(2. I) 
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i 

s[B I (s) cth H i + B~ (s) cth Hz]=  H 0 (z) COS dx, 
0 

w h e r e  t h e  f u n c t i o n s  wo(x)  and u o ( x )  a r e  p r o p o r t i o n a l ,  r e s p e c t i v e l y ,  to  t h e  f u n c t i o n s  w~(x ,  
0) --w2(x, 0) and  3 u t / 3 x - -  ~u~/~x f o r  y = 0.  

Us ing  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  d i s p l a c e m e n t s  in  t h e  n e i g h b o r h o o d  o f  t h e  t i p  o f  
t h e  c r a c k ,  we c a n  r e p r e s e n t  wo(x)  and u o ( x )  i n  t h e  fo rm o f  i n t e g r a l s  o f  some f u n c t i o n s  ~ ( t )  
and , ( t ) ,  c o n t i n u o u s  in  t he  s e g m e n t  [0 ,  1] [ 6 ] ,  

t t t 

WO (X ) = S "r(P ( ')  d" ~ ~ j" * ('~) d'f S V ~ '  ,,o (~) - V t  - ~------;- ~ ,  6 = - , (,) ~ ,  ( 2 . 2 )  
;g ~c 0 

2c 

where the constant ~ is determined from the condition lim[ u0(~)d~=0 ; the latter assures 

satisfaction of the equality u~(x, 0) = u~(x, 0) for x i>I. 

Substituting (2.2) into (2.1), we obtain 

! 

B1 (s) - -  B2 (s) = - ~  ,i "[tP (T) Jo (s'~) d'g == - ~  ff~)o (s), 
o 

s [ B ~ ( s ) c t h H l ~ - B 2 ( s ) c t h H . z l =  8/o(s) q-.!'*(~)3"o(s~:)dT = - ~ -  
0 

't'o (s). 

( 2 . 3 )  

From this we have 

B10) = - T F o  [~o(S) ~-~+Oo0)  cthH2]i 

B 2 (s) = -~- F o [T o (s) s - i  --  @o 0) cth Hll ,  Fo = cth H I . cth H,. 

We substitute these expressions for B,(s) and B2(s) into the unused first two equations of 
system (1.8) and for x < i we obtain 

j" [oo (,) I2 0) + ~o (~) h. 0)l ~in (, ,)  d~ = - J' p (~)/~.d,:, 
0 0 

~[@o (s)/~ (s) -~ ~F o (s)/3 (s)l s sin (sx) ds = ~: (x)l~t, 
0 

(2.4) 

where the first equation from (1.8) is integrated with respect to x within the limits 0 to 
x, and 

/1 (s) = 2 (s~Fo) - i  [(p~ q~z]~ 

h (~) = 2 (~'4,ro) - ~  [q~ + %], 1+ (+) = # i  0). 

For large values of s the function f1(s) ~ 0(e -HI~ e -H2). Inplace of the functions 
f2(s) and f3(s), we introduce g2(s) and g3(s) using the equalities 

/~ (s) = I + g~ (s), gs (s) N 0 (Hze -H~, Hse--H'),  

#3 0) ~ 1 + g3 (s), g3 (s) ~ 0 (Hle~ -H', Hse--H'). 

Into the integral equations determined in this manner, we substitute the functions f2(s) and 
f3(s) and expressions (2.3) for Co(s) and To(S). Changing the order of the integration and 
using the known integral 
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we obtain 

where 

two Abel equations, 

~Yo (s~) sin (sx) ds = (x ~ - - z~) - i /2  with z >  ~, 
o 

i~:(P -= H (x), ~ = He (x), 
1. d~ 

o - V ~  Jo V ~ ' - ' ~  

H (x) = --  I~ - i  p @) d x - -  I ~$ (~) d~ 
o ~ o 

gz (s) Jo (s~) sin (=x) ds - -  J" ~P (~) d~ . la (s) [Jo (s~) - -  ]o (s)l sin (sz)ds; 
o o 

110 (x) = "~ (x)/~ - -  ~ r ('~) d~ ~ g, (s) [Jo (s~) - -  go (s)] sin (sx) ds - -  S "rW ('~) d~ s/ ,  (s) Jo (s~) sin (sx) d#, 
0 0 0 0 

whose solutions have the form 

t 
2 ~ H' (x) dz 

r  r  
o 

~ ( t ) _  2 ~H~t (x) dx 

, ' - T I ~ _ T ~  " �9 

Without loss of the generality in the discussion, in what follows we assume r(x) = 0 and 
p(x) = Po = const. Differentiating H(x) and Ho(x) with respect to x and carrying out calcu- 
lations, we obtain a system of integral Fredholm equations of the second kind: 

i t 

% (t) + ~ % ('c) K 1 ('~, t) d~ + S *o ('~) Ks (% t) d'~ = - -  
0 0 

i t 

+ S (~1 ~:~ t) e~ j" % (~) ~, (~, t) o, o < t, ~ < ~, r (o % (~, + a~ = 
o o 

( 2 . 5 )  

where 

% (t) = ~ (t) t~ /2pF~;  % (t) = r t-~/2pi-~i,; 

K 1 ('r, t) = t/'~t ~ sg2 (s) ]o (st) ]o (st) ds; 
0 

o o  

K., (~, t) = V-~ y sA (s)iL, (s~) - -  ~ro (41 ]o (st) ds; 
o 

K 3 (% t) = ~ ' ~  ~ sg3 (~) [1o (s~) -- Zo (s)] r (st) ds; 
0 

t ~  

IQ (~, r = l / i - i !  s2L (=) :o (s~) :o (st) ds. 
o 

With the 
tain the 

use of the boundary conditions (1.4)(the boundaries of the layer 
same system of integral Fredholm equations (2.5), in which 

- -g2 ( s )=2(~Fo) - - i {~h~Hlsh~ / /~sh2 (Hl_}_H~)_ t_~  Hil l212  2 

X (sh2H1 + sh~Hg) -- H i shSH= ch H, --/fl shS H, ch//, -- 

- -  H I sh~//1 ( sh~/-/i  + ch~ H1 sh2 H2 + sh/- / I  sh H 2 ch H a ch H2) - -  

- -  H2 she / /2  ( shz H~ --~ ch 2 H~ sh 2 H x + s h / / 1  sh H~ ch H 1 ch H~) + 

+ Hal l  2 ( H  2 sh ~ H 2 + H 2 sh ~ H ,  -~ H a sh  2 g ~  sh H a ch H i ,--}- 

-4- H2 sh 2 Hx sh H ,  ch H ,  - -  2 sh ~ H 1 sh ~ H2) } -t- l ,  

are free), we ob- 

(2.6) 
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= 2:( Fo) - H , ] ,  

g8 (s) - -  2FO i [H1H ~ (H I -~ H~) - -  g e sh e H, - -  H I sh ~ Ht  + 

4- H 2 sh g~ cil H e -~ H2 2 sb H I ch H I - -  sh g~  sh H~ sh (H I -~ H2) ] - -  t ,  

1, (s) = s/~ (s), Fo = [(H x + H2) ~ - -  sh ~ (Hx -~- H,)], 

---- H I sh e H, ~- H e sh ~ HI 4- sh H I sh H, sh (H, -~ H~). 

w The condition of the limiting equilibrium of the crack is completely determined by 
the stress-concentratlon factors K I and KII at the tip of the crack with a singularity of the 
order (Ax)-~/2 (Ax << i). We shall show that the components of the stress tensor have a sin- 
gularity of the first order, and we shall find the coefficients for this singularity. Using 
the solution obtained -- (I.i) and (2.3) --we can write 

cxx (Z, O) = - -  2 j" [Vo (s) 1~ (s) -]- (1) o (s) 1~ (s)] s cos (sx) ds, 
0 

/~ (s) = (sCFo) --t [H x ch H ,  sh - t  t i  I - -  H~ ch H I sh - !  H ,  - 

o shH~] 
- -  2 c h  H ,  ch  H t  - -  2 c h  ~ H 1 ~ ] ,  

/e (s) = (~F0) - i  [H, ch'H~ sh - t  H 1 cth H~ -~ H~ ch H~ sh - t  H~ cth H i  - -  Fe ch H ,  ch H~]" 

I n  t h i s  e x p r e s s i o n  a n d  i n  e x p r e s s i o n s  ( 2 . 4 )  f o r  Z y y  a n d  Z x y ,  s e p a r a t i n g  o u t  t h e  p r i n c i -  

p a l  t e r m s  i n  t h e  f u n c t i o n s  f i ( s )  ( i  = 1 ,  2,  . . . ,  6 ) ,  we w r i t e  

oxx (~, O) " .~ [2~o (s) + sOo (s)] cos (sz) as, 
0 

Cyy (z, 0) ~ .I s ~  (s) cos (sz) ds, axy (z, O) ~ - -  .I Vo (s) sin (sz) ds. 
o o 

(3.1) 

In the expressions for ~o(s) and ~o(S) we also take only the main integral part, since it 
can be shown that the remaining terms do not participate in the formation ~ the singularity: 

[ ] ~o (s) ----- .[ ~r (~) Jo (s~) dT= s -I ~ (1) Jx (s) -- .I <p" (~) TJ~ (s~) dT --~ 
0 0 

- -  s - t ~  (t) ~i (s) - -  . . . .  Vo (s) "-, 6J~o (s) + . . .  

Substituting these relationships into (3.1), we obtain 

%= (=, o) ,-, ,~ (1) [ .r~ (~) cos (~=) d, + 26 ( .G (~) cos (s=) d~, 

~y~ (x, 0) --- ~ (t) f ]1 (s) cos (sx) ds, cxy (x, O) " - - 6  f Jo (s) sin (sx) d.. 
o b 

Now, using known integrals [7], we can write an asymptotic representation of the components 
of the stress tensor (e << i) at the point x = I: 

%~(x,  O) - - r  [z~ - 1 l - ' ~ ( z  + V x - r - ~ -  ~) -1, 

%y(x,  o) "- - r  t ] - l '~ (z  + ]zz-~-z-]- l) -1, 

axy(X , O ) ~ - 6 [ x  2 - 1 1 - 1 / *  for x =  i - I - e ;  

axx(X, O) ~ 261t - -  z2] -112 -[- ~(1), 

% ~ ( . ,  O) "" ~(1), a y(z, O) ".. 0 

for x = 1 -- e. From this, it can be seen that the expressions have the required singularity 
in the neighborhood of the point x = i. The coefficients with this singularity, i.e., the 
stress-concentration factors, are expressed in terms of the solutions of the integral Fred- 
holm equations (2.5): 
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t 

K I = -- poqDo (t) V ' ~ ,  K n  = Pot / l/2..[ ~Po (t) -W-~dt. 
o 

Let us examine two limiting cases in more detail. The first, where the crack is located 
s y m m e t r i c a l l y  i n  t h e  l a y e r ,  i . e . ,  h ,  = h 2 ,  a n d  t h e  s e c o n d  w h e r e  t h e  c r a c k  i s  l o c a t e d  n e a r  
the boundary of a half space, i.e., h2 § ~. For h, = ha = h, K2(T, t) = KI(T, t) = 0; con- 
sequently, ~ ( t )  = 0 a n d  t h e  p r o b l e m  i s  r e d u c e d  t o  t h e  s o l u t i o n  o f  o n e  i n t e g r a l  e q u a t i o n  f o r  

the function ~o(t) : 

i 

% (t) + .f %(t) gto (~, t) dt = -- ]/7~, 
0 

co  

Klo (x, t) = ~ .[ s [H sh - 2  H q- cth H - -  i] Jo (st) S o (s~) ds, 
0 (3.2) 

oo 

K~o (t ,  t) = - -  ]/'~xt s H + sh H eh H + t I o (st) .,r o (st) ds, 
0 

o o  

- , - -  ~ [ H  2 + ( t - 2 v )  2 + ? c h 2 H  ] (st) Yo(sx)ds, K~o(~,0 = V ~t j .  [ 7 -~  H~--'~g-=---g - i .to 
o 

where the first kernel corresponds to the boundary conditions (1.3), the second to the con- 
ditions (1.4), and the third to the conditions (1.5). The results of a numerical calcula- 
tion of Eq. (3.2) with the kernels Kio(T , t) (i = i, 2, 3) are shown in Figs. 1 and 2 by the 
curves i and in Fig. 3 by the curves 1-4, plotted for the Poisson coefficient ~ = 0.15, 0.25, 
0.35, and 0.45, respectively. Curves I in Figs. 1 and 2 coincide completely with curves 
plotted in accordance with dependences given in [3]. The curves in Fig. 3 depend to a con- 
siderable degree on the Poisson coefficient ~. With an increase in ~, the curves converge 
more rapidly to the asymptotic formula [5] 

K~ = pol Ig-- 2~ ( t  - ~ ) - q / ' f f ~ ,  (3.3) 

valid for h << i. Thus, for ~ = 0.45, a divergence from values calculated using formula 
(3.3) starts with a ratio h/l = 0.5, while the asymptotic formulas [4, 5] 

KI  = p o V h - 7 ~ ,  

KI = po)r6h,'~-~ [0.1267 ~- 0.6733k -a q- 0.5L -2 + (0.0104 - -  0.1267k -~ - -  0.3367k7 ~ - -  1/6.k-3)/(0,6733 @ k-~)], ~. = h/l, 
corresponding to the boundary conditions (1.3) and (1.4) hold up to a ratio h/l < 2 with an 
accuracy of 1-2%. In [3-5], a complete solution is given to the symmetrical problem of a 
crack in a strip, with the exception of the case where the boundaries of the strip are rigid- 
ly fixed, i.e., the boundary conditions (1.5) are satisfied. In this case the solution for 
0.5 < h/l < 2 is practically indeterminate. 

Where h2 § ~, the crack is located near the boundary of the half space. In distinction 
from the symmetrical case, here neither of the stress-concentration factors K I and KII is 
equal to zero, and the total system of Fredholm equations (2.5), (2.6) must be solved with 
the boundary conditions (1.3) and (1.4). If the boundray of the half space is rigidly fixed 
(for y = h, u = w ffi 0), we arrive at a system analogous to (2.5): 

i i 

qv o (t) - -  .f (Po ('~) Kx (x, t) dx - -  S r (x) K~ (T, t) d'~ = " i ~  
o o 

i i 

~Po (t) - ,! ~;o (x) U a (x, t) d~ - -  S q9~ (~) K~ (x, t) d~ = 0, 
o o 

oo  

o~  

K2 (T, t) ,= ]/-~ S 2 /a~Fo/I jo (St) []o (sx) --  go (s)] ds, 
o 

( 3 . 4 )  
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where 

o 

oo 

C ~ 2 H ~ + I d , -  , , 
K 4 (T, t) = V ~  .} zs ~F  ~ .t o isx) Jo (st) ds~ 

I 

/I--- H~ +? ch2H+(i-2v)2; Fo=~?e 2~; 

~2= H--ychHshH; ~= h r-q- (i --2v)--~?eH chH; 
f s - = y c h ~ H - - ( l - - 2 v ) ;  1'4~ H +  2 ( t - - v ) + y e r ~ s h H ;  
fs-- - - H - - 2 ( I  --v) +~eHehH.  

Equations (2.5), (2.6) (as h -> =o), and (_3.4) were calculated numerically. The results of 
the calculations are given in Figs. i, 2, and 4. In Figs. i and 2, curves 2 and 3 relate, 

570 



respectively, to Kl/2/po/~and Kll/2/po ~. Curves 1-4 in Fig. 4 represent Kl~/po~ (upper) 
and Kli/2/po/~ (lower), calculated for ~ = 0.15, 0.25, 0.35, and 0.45. As can be seen from 
the dependences given in Fig. 4, the effect of the Poisson coefficient ~ starts to appear 
with h/l < 0.5, i.e., only with an approach of the crack to the boundary of the half space. 

In Fig. I, curves 4 and 5 illustrate Kl/2/po~ and Kll/2/po~, calculated using Eqs~ 
(2.5) with h~ = h and h2 = 2h, which corresponds to a crack located in a strip of width 3h, 
at a distance from the upper boundary equal to one third of its width. As can be seen from 
the curves given, for small values of h/l (h/l < i), the value of the ratio Kll~/Po~ varies 
only insignificantly, and the value of K I is well described by the formula 

Kz =~3h/4~.po, 

i.e., it behaves in the same way as in the case of a system of parallel cracks, arranged at 
an identical distance 3h apart. 
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